歡迎來到 常識詞典網(wǎng) , 一個專業(yè)的常識知識學(xué)習(xí)網(wǎng)站!
[ Ctrl + D 鍵 ]收藏本站
答案 1:
從幾何意義上來說,n維向量空間的一條線段作為底邊和-組成的三角形,其頂角大小是不確定的。也就是說對于兩條空間向量,即使兩點距離一定,他們的夾角余弦值也可以隨意變化。感性的認識,當(dāng)兩用戶評分趨勢一致時,但是評分值差距很大,余弦相似度傾向給出更優(yōu)解。舉個極端的例子,兩用戶只對兩件商品評分,向量分別為(3,3)和(5,5),這兩位用戶的認知其實是一樣的,但是歐式距離給出的解顯然沒有余弦值合理。答案 2:
貌似有點明白了,余弦夾角可以有效規(guī)避個體相同認知中不同程度的差異表現(xiàn),更注重維度之間的差異,而不注重數(shù)值上的差異;反過來思考,當(dāng)向量夾角的余弦值較?。ú町惡艽螅r,歐氏距離可以很小(差異很?。?,如(0,1)和(1,0)兩個點,所以如果要對電子商務(wù)用戶做聚類,區(qū)分高價值用戶和低價值用戶,用消費次數(shù)和平均消費額,這個時候用余弦夾角是不恰當(dāng)?shù)?,因為它會?2,10)和(10,50)的用戶算成相似用戶,但顯然后者的價值高得多,因為這個時候需要注重數(shù)值上的差異,而不是維度之間的差異。所以余弦相似度衡量的是維度間相對層面的差異,歐氏度量衡量數(shù)值上差異的絕對值,不知道這樣理解對不對。答案 3:
我覺得你在這里所提應(yīng)該是指馬氏距離[1],因為在多元情況下是應(yīng)該除以協(xié)差陣來進行標(biāo)準化的。關(guān)于馬氏距離與余弦相似度的區(qū)別,個人以為這是一種長度與方向的度量所造成的不同。馬氏距離度量的是長度,它只有遠近之分。而余弦相似度是度量方向的,余弦相似度為1,你不可以說這兩個向量一樣,只能說他們是相似的,因為他們是同方向的,就好象(3,3)與(5,5)。但是馬氏距離度量的是長度,長度為0就可以認為他們是一樣的。余弦相似度只在[0,1]之間,有準則,而馬氏距離在[0,無窮)之間,無判別準則.余弦相似度為0(即直交)就可以說他們很不相似,就算他們之間距離小,但是他們方向完全不一致。而馬氏距離就需要另找判別準則來定義怎么算大,怎么算小。于是相對應(yīng)的應(yīng)用也就出來,如果你所想應(yīng)用的是對應(yīng)方向上,例如@劉一丁中的感性認識,這是一種對于用戶思考方向的研究,則應(yīng)該用余弦相似度。但是若要用來區(qū)分價值大小,例如@joeg-中的高低價值用戶聚類,則應(yīng)該用馬氏距離[1]en.-.org/wiki...答案 4:
強烈贊同劉一丁的從直覺上的感性認識 再舉個余弦相似度的例子:歌手大賽,兩個評委給四個歌手打分,第一個評委的打分(10,8,9,7) 第二個評委的打分(9,7.2,8.1,6.3),雖然每個評委對同一個選手的評分不一樣,但反映出一種趨勢,兩個評委對這四位歌手實力的了解程度是一樣的,只是第二個評委對滿分有更高的評判標(biāo)準。答案 5:
簡而言之,需要考慮scaling區(qū)別的用Euclidean Distance,否則Cosine Similarity得到的相似度度量更穩(wěn)定,實際應(yīng)用場景下后者適用的居多。答案 6:
直觀來說,歐式距離衡量空間點的直線距離,余弦距離衡量點在空間的方向差異。答案 7:
這個也是具體情況具體分析的,看你關(guān)注的是絕對距離還是相對距離啦。 歸根結(jié)底是個相異度的問題,也就是說你說一個大的照片和一個小的照片相異么?雖然照片的內(nèi)容一樣。你要用歐氏距離,那差別就大了,要是用余弦夾角就小啦下一篇:女人最討厭男人怎么穿衣服? 下一篇 【方向鍵 ( → )下一篇】
上一篇:現(xiàn)在中國-主流的人不用繁體字? 上一篇 【方向鍵 ( ← )上一篇】
快搜